第1篇 初中數(shù)學知識點總結:方差 700字
初中數(shù)學知識點總結:方差
初中數(shù)學知識點總結之方差
接著平均數(shù)的內(nèi)容,下面的小編為大家整合的是初中數(shù)學知識點大全之方差。
上述是的小編為大家整合的初中數(shù)學知識點大全之方差,相信各位同學已經(jīng)熟知要領了吧。想要了解更多更全的初中數(shù)學知識就來關注吧。
初中數(shù)學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內(nèi)容學習,希望同學們很好的掌握下面的內(nèi)容。
平面直角坐標系
平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的`講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內(nèi)容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸或y軸統(tǒng)稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內(nèi)容都能很好的掌握,同學們認真學習吧。
第2篇 初中數(shù)學三角函數(shù)知識點總結 850字
初中數(shù)學三角函數(shù)知識點總結
銳角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的'銳角三角函數(shù)。
正弦(sin)等于對邊比斜邊;sina=a/c
余弦(cos)等于鄰邊比斜邊;cosa=b/c
正切(tan)等于對邊比鄰邊;tana=a/b
余切(cot)等于鄰邊比對邊;cota=b/a
正割(sec)等于斜邊比鄰邊;seca=c/b
余割(csc)等于斜邊比對邊。csca=c/a
互余角的三角函數(shù)間的關系
sin(90°-α)=cosα, cos(90°-α)=sinα,
tan(90°-α)=cotα, cot(90°-α)=tanα.
平方關系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
積的關系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒數(shù)關系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
銳角三角函數(shù)公式
兩角和與差的三角函數(shù):
sin(a+b) = sinacosb+cosasinb
sin(a-b) = sinacosb-cosasinb ?
cos(a+b) = cosacosb-sinasinb
cos(a-b) = cosacosb+sinasinb
tan(a+b) = (tana+tanb)/(1-tanatanb)
tan(a-b) = (tana-tanb)/(1+tanatanb)
cot(a+b) = (cotacotb-1)/(cotb+cota)
cot(a-b) = (cotacotb+1)/(cotb-cota)
三角和的三角函數(shù):
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
輔助角公式:
asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中
sint=b/(a^2+b^2)^(1/2)
cost=a/(a^2+b^2)^(1/2)
tant=b/a
asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b
倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]si
第3篇 初中數(shù)學常用的知識點總結 400字
初中數(shù)學常用的知識點總結
一元二次方程的知識為初等數(shù)學知識,一般在初三就有學習,同時也是中考的熱點。
一元二次方程
定義
只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是2次的整式方程叫做一元二次方程( quadratic equation of one variable 或 a single-variable quadratic equation)。
一元二次方程有三個特點:
(1)含有一個未知數(shù);
(2)且未知數(shù)的最高次數(shù)是2;
(3)是整式方程.要判斷一個方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進行整理.如果能整理為 ax2+bx+c=0(a≠0)的形式,則這個方程就為一元二次方程.里面要有等號,且分母里不含未知數(shù)。
補充說明
3、方程的兩根與方程中各數(shù)有如下關系: x1+x2= -b/a,x1·x2=c/a(也稱韋達定理)
4、方程兩根為x1,x2時,方程為:x2-(x1+x2)x+x1x2=0 (根據(jù)韋達定理逆推而得)
5、在系數(shù)a>;0的'情況下,b2-4ac>;0時有2個不相等的實數(shù)根,b2-4ac=0時有兩個相等的實數(shù)根,b2-4ac<0時無實數(shù)根。(在復數(shù)范圍內(nèi)有兩個復數(shù)根)
一般式
ax2+bx+c=0(a、b、c是實數(shù),a≠0)
例如:x2+2x+1=0
配方式
a(x+b/2a)2=(b2-4ac)/4a
兩根式(交點式)
a(x-x1)(x-x2)=0
通常情況下,一般二次函數(shù)與反比例函數(shù)就會涉及到一元二次方程的解法。
第4篇 初中數(shù)學平行公理的知識點總結 1300字
初中數(shù)學平行公理的知識點總結
平行公理
1、同位角相等,兩直線平行
2、內(nèi)錯角相等,兩直線平行
3、同旁內(nèi)角互補,兩直線平行
4、兩直線平行,同位角相等
5、兩直線平行,內(nèi)錯角相等
6、兩直線平行,同旁內(nèi)角互補
中考知識點總結:經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
平面直角坐標系
平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸或y軸統(tǒng)稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的.講解學習,希望同學們對上面的內(nèi)容都能很好的掌握,同學們認真學習吧。
點的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應點a,b分別叫做點c的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點c的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數(shù)項注意查項數(shù)
③雙重括號化成單括號
④結果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內(nèi)同類項合并。
第5篇 初中數(shù)學三角形斜邊公式總結 1400字
初中數(shù)學三角形斜邊公式總結
值得大家注意的是三角形斜邊公式必須以直角三角形為基礎,不可是其他的三角形。
三角形斜邊公式
(一)已知兩條直角邊的長度 1)可按公式:c2=a2+b2 (2是平方)
(二)如已知一條直邊和一個銳角,可用直角三角函數(shù)計算
直角三角形abc的六個元素中除直角c外,其余五個元素有如下關系
a+b=90度
sina=角a的對邊 / 斜邊
cosa=角a的鄰邊 / 斜邊
tga=角a的對邊 / 角a的鄰邊
ctga=角a的鄰邊 / 角a的對邊
例:角a等于30度,角a的對邊是4米,計算斜邊c是多少?
查表sin30度=0.5, c=4/0.5=8
其實說到底,三角形斜邊公式也就是我們常常運用到的勾股定理。
初中數(shù)學正方形定理公式
關于正方形定理公式的內(nèi)容精講知識,希望同學們很好的掌握下面的內(nèi)容。
正方形定理公式
正方形的特征:
①正方形的四邊相等;
②正方形的四個角都是直角;
③正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
①有一個角是直角的菱形是正方形;
②有一組鄰邊相等的矩形是正方形。
希望上面對正方形定理公式知識的講解學習,同學們都能很好的掌握,相信同學們會取得很好的成績的哦。
初中數(shù)學平行四邊形定理公式
同學們認真學習,下面是老師對數(shù)學中平行四邊形定理公式的內(nèi)容講解。
平行四邊形
平行四邊形的性質(zhì):
①平行四邊形的對邊相等;
②平行四邊形的對角相等;
③平行四邊形的.對角線互相平分;
平行四邊形的判定:
①兩組對角分別相等的四邊形是平行四邊形;
②兩組對邊分別相等的四邊形是平行四邊形;
③對角線互相平分的四邊形是平行四邊形;
④一組對邊平行且相等的四邊形是平行四邊形。
上面對數(shù)學中平行四邊形定理公式知識的講解學習,同學們都能很好的掌握了吧,相信同學們會從中學習的更好的哦。
初中數(shù)學直角三角形定理公式
下面是對直角三角形定理公式的內(nèi)容講解,希望給同學們的學習很好的幫助。
直角三角形的性質(zhì):
①直角三角形的兩個銳角互為余角;
②直角三角形斜邊上的中線等于斜邊的一半;
③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);
④直角三角形中30度
角所對的直角邊等于斜邊的一半;
直角三角形的判定:
①有兩個角互余的三角形是直角三角形;
②如果三角形的三邊長a、b 、c有下面關系a^2+b^2=c^2
,那么這個三角形是直角三角形(勾股定理的逆定理)。
以上對數(shù)學直角三角形定理公式的內(nèi)容講解學習,同學們都能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學等腰三角形的性質(zhì)定理公式
下面是對等腰三角形的性質(zhì)定理公式的內(nèi)容學習,希望同學們認真看看。
等腰三角形的性質(zhì):
①等腰三角形的兩個底角相等;
②等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(三線合一)
上面對等腰三角形的性質(zhì)定理公式的內(nèi)容講解學習,同學們都能很好的掌握了吧,希望同學們在考試中取得很好的成績。
初中數(shù)學三角形定理公式
對于三角形定理公式的學習,我們做下面的內(nèi)容講解學習哦。
三角形
三角形的三邊關系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度;
三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;
三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;
三角形的三條角平分線交于一點(內(nèi)心);
三角形的三邊的垂直平分線交于一點(外心);
三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半;
第6篇 初中數(shù)學知識點總結之直角坐標系與點的位置 1700字
關于初中數(shù)學知識點總結之直角坐標系與點的位置
直角坐標系與點的位置
1.直角坐標系中,點a(3,0)在y軸上。
2.直角坐標系中,x軸上的任意點的橫坐標為0.
3.直角坐標系中,點a(1,1)在第一象限.
4.直角坐標系中,點a(-2,3)在第四象限.
5.直角坐標系中,點a(-2,1)在第二象限.
通過上面的講解,相信同學們可以很好對直角坐標系與點的位置知識點的掌握,希望同學們做的很好。
初中數(shù)學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內(nèi)容學習,希望同學們很好的掌握下面的內(nèi)容。
平面直角坐標系
平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內(nèi)容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸或y軸統(tǒng)稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內(nèi)容都能很好的掌握,同學們認真學習吧。
初中數(shù)學知識點:點的坐標的性質(zhì)
下面是對數(shù)學中點的坐標的性質(zhì)知識學習,同學們認真看看哦。
點的'坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應點a,b分別叫做點c的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點c的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質(zhì)知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數(shù)學知識點:因式分解的一般步驟
關于數(shù)學中因式分解的一般步驟內(nèi)容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們會考出好成績。
初中數(shù)學知識點:因式分解
下面是對數(shù)學中因式分解內(nèi)容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數(shù)項注意查項數(shù)
③雙重括號化成單括號
④結果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內(nèi)同類項合并。
第7篇 學好初中數(shù)學的方法總結 950字
學好初中數(shù)學的方法總結
一、認真安排時間。首先你要清楚一周內(nèi)所要做的事情,然后制定一張作息時間表。在表上填上那些非花不可的時間,如吃飯、睡覺、上課、娛樂等。安排這些時間之后,選定合適的、固定的時間用于學習,必須留出足夠的時間來完成 正常的閱讀和課后作業(yè)。當然,學習不應該占據(jù)作息時間表上全部的空閑時間,總得給休息、業(yè)余愛好、娛樂留出一些時間,這一點對學習很重要。一張作息時間表也許不能解決你所有的問題,但是它能讓你了解如何支配你這一周的 時間,從而使你有充足的時間學習和娛樂。
二、學前預習。這就意味著在你認真投入學習之前,先把要學習的內(nèi)容快速瀏覽一遍,了解學習的大致內(nèi)容及結構,以便能及時理解和消化學習內(nèi)容。當然,你要注意輕重詳略,在不太重要的地方你可以花少點時間,在重要的地方,你可以稍微放慢學習進程。
三、充分利用課堂時間。學習成績好的學生很大程度上得益于在課堂上充分利用時間,這也意味著在課后少花些功夫。課堂上要及時配合老師,做好筆記來幫助自己記住老師講授的內(nèi)容,尤其重要的是要積極地獨立思考,跟得上老師的思維。
四、學習要有合理的規(guī)律。課堂上做的筆記要在課后及時回顧,不僅要復習老師在課堂上講授的重要內(nèi)容,還要復習那些你仍感模糊的認識。如果你堅持定期復習筆記和課本,并做一些相關的習題,你定能更深刻地理解這些內(nèi)容,你的記憶也會保持更久。
五、找一個安靜、舒適的地方學習。選擇某個地方做你學習之處,這一點很重要。它可以是你的`單間書房或教室或圖書館,但它必須是舒適、安靜的。當你開始學習時,你應該全神貫注于你的功課。
六、不能情緒波動的時候?qū)W習。科學研究表明,在學習數(shù)學等理工學科的時候注意力非常難集中,所以在學習之前絕對不能有和同學爭吵,或者興奮的劇烈運動等等情緒。否則一時間無法集中注意力而無法進入學習狀態(tài)。所以在學習之前要平靜心態(tài),集中注意力,才可以達到事半功倍的效果。
七、樹立正確的考試觀。平時測驗的目的主要看你掌握功課程度如何,所以你不要弄虛作假,而應心平氣和地對待它?;蛟S,你有一兩次考試成績不盡如人意,但是這不要緊,只要學習扎實,認真對待,下一次一定會考出好成績來。通過測驗,可讓你了解下一步學習更需要用功夫的地方,更有助于你把新學的知識記得牢固。
第8篇 初中數(shù)學研究型教師培訓總結 4100字
初中數(shù)學研究型教師培訓總結
20xx年9月7日至25日,我有幸參加了由保定學院承擔的河北省省初中數(shù)學骨干教師培訓。這次培訓對于自己收益很大,培訓時間安排合理緊湊,老師們講課精彩,教學內(nèi)容豐富多彩。這次培訓給我們提供了一個再學習、再提高的機會,讓我們能聚集在一起相互交流,共同學習,取長補短,共同提高。通過這次培訓,收獲很多,眼界開闊了,思考問題能站在更高的境界,許多疑問得到了解決或者啟發(fā)。我們不僅學到了豐富的知識,進一步提高了業(yè)務素質(zhì)?,F(xiàn)總結如下:
一、更新了教育教學觀念,以新觀念指導教學
時代在不斷進步,社會在不停前行。同樣,教育教學理念也應與時俱進。特別是隨著新課程改革的縱深發(fā)展,很多教育教學中的深層次問題不斷地暴露,這時候更需要理論的指示與專家的引領。對于我個人而言,這次培訓無疑是一場;及時雨;,不僅對理清新課改中的種種關系有幫助,而且對突破新時代教育教學中一些;瓶頸; 問題提供新的解決思路與方法。
首都師大博導、新課標研制組組長王尚志教授的《整體把握新課程下的初中數(shù)學》的專題報告。他細致的分析了新課改的一些重大變化,如有原來常提的雙基改為了四基,兩種能力也增為四種能力,這些都對一線教師產(chǎn)生了深深的觸動,并對一線教師提出了新的要求。如何在教學中落實成為新時期一線數(shù)學教師所面臨的問題,同時也提出了初中數(shù)學教學不要僅僅局限于數(shù)學課堂,要提高各方面知識和能力。
二、更新了教育教學知識,結合新知識服務教學
教師要知識的更新與教學藝術的更新。作為數(shù)學老師,他應是始終站在科學知識岸邊的擺渡人,傳承知識與文化;他應是學生靈魂的塑造師與精神垃圾的清道夫。所以,作為數(shù)學教師必須時時保持充電的狀態(tài),此次培訓無疑是一次良好的機會。經(jīng)過培訓,就我個人而言,不僅在學科知識方面得到一次全面的補充,而且在教學藝術方面得一次新的補充。
人民教育出版社中學數(shù)學室主任、課程教材研究所研究員章建躍博士《有效改進課堂教學》的專題報告,對初中數(shù)學的教學目標,課堂設計進行了深入的闡釋,提出這是聚焦課堂的教學研究的最直接的方式方法。保定市數(shù)學教研員徐建樂老師《進一步理解新課程下的教與學》,保定市新市區(qū)數(shù)學教研員王衛(wèi)國老師《數(shù)學復習課設計的實踐與思考》等專題報告都從具體教學設計、教師教學、學生學習的方面對初中學學教學從不同方面進行了細致分析和講解。同時強調(diào)現(xiàn)在的教師需要有反思精神,需要掌握教育學知識,才能成長為學生喜歡的教師。
總之,教育是一門藝術,需要老師不斷的自己更新,才能更上一層樓。
三、觀摩了名師教育教學,合理吸收利用于教學
此次培訓活動的一大特色就是理論聯(lián)系實際。不僅聆聽了專家的解讀,而且近距離地學習了名師的教育教學藝術和班級管理藝術。
保定三中章魏老師的《把握數(shù)學本質(zhì),打造有效數(shù)學課堂》,他通過多達42個實際課例講授了提高數(shù)學素質(zhì)是實現(xiàn)有效課堂的前提及教師應具備的數(shù)學學科專業(yè)知識等內(nèi)容,通過多達幾十個實例具體講解課堂的各環(huán)節(jié)設計。讓學生發(fā)現(xiàn)提出問題能力的培養(yǎng),作為教師首先就要對教材細琢磨,換個角度多想想,發(fā)現(xiàn)提出問題,才符合新形勢下對我們一線教師的要求!
觀摩了徐水二中許春英教師、北京九中三名教師、保定七中教師的教學,大家積極開展研討,研討中沒有虛假的恭維,只有真知灼見、真實流露;沒有形式上的大話、套話,只有深入思考后的針鋒相對?,F(xiàn)場研討,成為思維交鋒、不同地域多元教研文化交融的平臺,感覺收獲頗豐。
四、理解了教師成長,加速成長要引領教學
教育的發(fā)展,關鍵在教師的成長。教師是學校發(fā)展的基石,學校的軟實力來自己于擁有一只業(yè)務能力強,團結敬業(yè)的教師隊伍。對于個人而言,教師的成長不僅是時代的要求,更是適當現(xiàn)代教育的需要。此次培訓,很多專家與同仁重點談了教師如何規(guī)劃自己的成長之路,成為名師,成為教育家。
如保定學院韓素蘭教授的《求解中學教師科研難題》的報告中關于中學教師研究解疑的講解條理清晰,研究及書寫論文步驟詳細,并且每點都聯(lián)系了大量實際案例,實際操作性強,聽起來很清楚明白,頓時覺得課題寫論文也并不是一件難事。保定學院常務副院長朱紅素教授《適者生存,強者精彩---骨干教師成長為名師的歷程》從名師的界定、特征解讀、條件闡述、成長路徑等四個方面進行了講解。提出作為名師要具備或盡快培養(yǎng)較強的個人能力:精于教學、長于教研、善于寫作。 保定學院數(shù)學系主任周和月教授《幾何畫板與中學數(shù)學教學》學到了利用幾何畫板達到更好的教學要求實現(xiàn)教學目標。
五、結識了全省教學名師,促進兄弟學校聯(lián)系教學
此次培訓是一個很好的平臺,參加培訓的都是全省教學一線的精英、名師,對教育教學都是自己獨到的見解。所以此次培訓是一個非常好的相互學習的機會,平時大家一起學習共同交流。認識,在交流中提升;情感,在交流中深化。同時,通過此次機會,建立友誼的紐帶亦為樂事。創(chuàng)辦的qq群,成為了大家各在一方時交流的平臺。
六、積極發(fā)揮示范引領作用,促進學校的教育教學
集中培訓后,我主動將這次培訓的成果帶回單位,充分發(fā)揮骨干教師的作用,積極示范,大膽引領,帶領全校的數(shù)學教師投入到學校教育教學改革中。在教研組活動中,我積極解答教師教學中遇到的各種難題,引導互動和交流,促進了大家的`專業(yè)素質(zhì)的成長。
參加省級骨干教師培訓是自己成長路上的一次重要經(jīng)歷,我格外珍惜。培訓時積極認真,回到學校,我對自己嚴格要求,事事仔細,目的就是要將學校的年輕教師都培養(yǎng)出來。我相信,通過這次培訓,我在初中數(shù)學教學的大路上。
初中數(shù)學研究型教師培訓總結
參加完3月29日的考試,回想去年8月暑期開始的浦東新區(qū)數(shù)學教師專項培訓,感觸很深,初中數(shù)學教師培訓總結。首先,這對于我來說是一個極好的機會,作為一個年輕教師,除了第一年有過一次新教師培訓,這樣系統(tǒng)有針對性的培訓從沒有接觸過。我參加的是初級班培訓,主要是針對初中教師存在的一些常見的問題如:進一步提高教師的教學能力、師生溝通的技巧、怎樣寫教育案例、如何做教學反思等課程,也有提高數(shù)學教師專業(yè)發(fā)展的如:數(shù)學命題試卷分析、初中函數(shù)與分析、數(shù)學課堂教學設計、數(shù)學思想與方法論等課程。本次培訓共開展了21次活動,主要分了3個階段,每一個階段的都各有收獲,現(xiàn)總結如下:
第一階段是專家和骨干教師的講座和交流,之間聽了一些生動的報告。黃俊嶺老師的師生溝通技巧讓我知道了和學生交流方式的重要性,在平時的教育教學中,我總覺得和學生的溝通不是最有效,而通過黃俊嶺老師的講座,我了解到師生間不良的溝通方式,師生有效溝通的原則,教師課堂管理解決問題的策略,優(yōu)秀教師的幾條人格魅力等等。確實使我受益非淺。;顧志躍老師的進一步提高教師的教學能力讓我了解當前一名教師專業(yè)發(fā)展的各方面要求;惲敏霞老師的教學反思研究,讓我理解了教學反思就是教師自覺地把自己的課堂教學實踐,作為認識對象進行全面而深入的冷靜思考和總結,從而進入更優(yōu)化的教學狀態(tài),使學生得到更充分的發(fā)展,它是一種有益的思維活動和再學習活動。教師的成長應該是經(jīng)驗加反思。教學反思可以激活教師的教學智慧,是我們教師成長的“催化劑”,是教師發(fā)展的重要基礎;是區(qū)別經(jīng)驗型教師與學者型教師的主要指標之一。她從七個方面給我們講了如何做好教學反思,讓我們能更好的做好教學反思。這讓我深深體會到一個教師寫一輩子教案難以成為名師,但如果寫三年反思則有可能成為名師這句話。還有一節(jié)課老師列出了一系列的初中數(shù)學解題典型錯誤,很遺憾我不記得老師的名字,但這卻讓我在這些方面引起了重視。在進行教學時,預先了解學生的典型錯誤,能進行有針對性地教學,同時也能選擇更好地教學方法和手段進行教學,讓學生的這些典型錯誤能進行糾正,學生的錯誤率有所降低。這些可以使我們從預備初一等低年級就把握住中考的方向,還能在低年級時,給學生慢慢體會很多重要的數(shù)學方法和數(shù)學思想。最讓我印象深刻的是呂飛老師的幾何畫板,在這之前我基本只會簡單的運用這個軟件,而1天的課程讓我掌握了幾個關鍵的技術,真正感受數(shù)學多媒體運用的實用性和魅力之處,可惜時間太短,有機會真希望還能進一步的深入學習。幾位數(shù)學教研員或骨干教師的數(shù)學命題分析和試題講解讓我也感觸頗多。聽了各位專家的講座,我覺得在今后的教學生涯中,我們不應僅僅著眼于一些短期利益,而應把眼光放長遠一些;課堂教學中應重視數(shù)學思想方法的滲透,而不局限于單一解答方法的教學;不要盲目地迷信新課程標準,而應辨證地看待它??傊?,通過這些理論的學習實踐的指導使我深刻的領會到要成長為一名優(yōu)秀的教師所要付出的努力以及必經(jīng)之路。
第二階段是聽課評課,對于初級班的學員,我們20位老師分成一組,每人上交一張教學光盤,無論中青年教師,大家都非常認真的觀看,其中好幾位老師的課讓人眼前一亮。課后的交流中大家暢所欲言,各抒己見,教學中經(jīng)歷的困惑、感受產(chǎn)生了許多共鳴。其實教師之間經(jīng)?;ハ嗦犝n和評課是教師提高自身教學水平的一條重要途徑。作為一名年輕教師,能夠經(jīng)常聽聽其他老師、特別是優(yōu)秀教師的課,有利于學習他們良好的教學態(tài)度、教學作風和教學經(jīng)驗。在這次的活動中,我們就有了很多這樣的機會。最后回到實際來評價組內(nèi)每一位教師的課,來提高自己的評課水平,加上導師的點評,起到了畫龍點睛的作用。
第三階段是培訓評價,最重要的當然是3月29日剛結束的考核,在復習過程中,又一次把第一階段的講座知識經(jīng)過了歸納和梳理,我感受到雖然是條件性性知識是開卷考試,但整理材料的過程中我已經(jīng)不知不覺了解了許多知識,工作總結《初中數(shù)學教師培訓總結》。而本體性知識的考核也讓我深刻體會到提升基本功的重要性。作為一名年輕教師,我目前最高只帶過初一年級,這次本體性知識題目我做起來感到非常的陌生和不適應,讓我深深體會到教師解題能力的重要性,要教給給學生一碗水老師必須要有一桶水甚至更多,而這對于我未來的發(fā)展是非常重要的。
在幾年的教學中有許多困惑,說實話,這次培訓許多問題還沒有得到根本上的解決,但卻給了我許多啟示。培訓結束了,但學習的道路是永遠沒有止境的。真心感謝上級能給我這一個寶貴的學習機會,使我認識了許多其他兄弟學校的老師和名師,使我從中學到了很多理論和實際知識,希望自己能得到更多老師的幫助。
第9篇 初中數(shù)學教學經(jīng)驗總結 2000字
數(shù)學教學過程是學生認識的過程、思維的過程。教師在平時的教學中,一定要著眼于學生的生活實際,找到數(shù)學與生活的結合點。教學活動必須建立在學生的認知發(fā)展水平和已有知識經(jīng)驗基礎之上。教師應該激發(fā)學生的學習積極性,向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解掌握基本的數(shù)學知識與技能,數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗。學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者,引導者與合作者。在教學中我們應根據(jù)學生實際,充分發(fā)揮教材的優(yōu)勢,真正實現(xiàn)由應試教育向素質(zhì)教育轉(zhuǎn)軌。我認為在教學中注重以下幾點:
一、 激發(fā)學生的興趣,變被動學習為主動學習
興趣是求知的起點,是學生學習和創(chuàng)造的動力之源,是成功的催化劑。要提高數(shù)學教學質(zhì)量,教師必須堅持從誘發(fā)學生的興趣入手,有目的、有計劃地培養(yǎng)學生學習數(shù)學的興趣,并使之能長久下去。那么怎樣激發(fā)學生的興趣呢?
1、創(chuàng)設問題情境,活躍課堂氣氛激發(fā)學習興趣
教學過程既是學習認知的過程,又是學生思維發(fā)展的過程,教師要善于創(chuàng)設問題情境,激發(fā)學生學習興趣,引導學生經(jīng)過努力成功地解決問題,必須營造愉悅的學習氛圍,創(chuàng)設良好的活動情境。把數(shù)學知識融于生活實踐中,使學生在情緒上引起共鳴,發(fā)現(xiàn)數(shù)學奧秘。使他們認識到數(shù)學離不開生活,生活中處處蘊涵著數(shù)學知識。
2、優(yōu)化教學環(huán)境,改進教學方法,調(diào)動學生的學習興趣。
根據(jù)學生的年齡特征和認識規(guī)律,充分利用學生的好奇心,采用各種手段誘發(fā)他們的求知欲望。中學生邏輯思維能力、理解能力想象能力等逐步形成,在教學中要給學生創(chuàng)設一些獨立思考的機會,發(fā)展學生對問題進行分析、判斷、概括的能力,使他們的技能得以表現(xiàn),興趣得到升華。
3、讓學生體驗成功的喜悅,培養(yǎng)自信心。
當學生取得成功時,可以使學生產(chǎn)生一種滿足,快樂、自豪等積極的情緒體驗,我們要抓住機會多表揚、鼓勵,特別是后進生我們要把他的積極的情緒轉(zhuǎn)化到學習上,從而提高學習興趣。
二、實施討論式教學,培養(yǎng)學生的自學探究精神
教學應該是創(chuàng)造性的活動,要為學生健全人格的形成和態(tài)度、能力、知識等方面的發(fā)展創(chuàng)造條件。積極引導和鼓勵學生發(fā)現(xiàn)和解決問題運用已有知識和經(jīng)驗,學習和掌握一些方法,為培養(yǎng)其終身學習和主動獲取知識的能力奠定基礎。隨著教學改革的不斷深入,探究式的教學策略被越來越多的教師所采用,合作式的小組學習已成為課堂教學的重要組織形式,課堂逐漸地被還給學生。例如,在教學《平行四邊形性質(zhì)》時,我將這個問題交給學生去研究,然后在小組內(nèi)交流,學生互相補充,最后總結概括出結論。這樣,學生有了明確的任務,又有了完成任務的機會,自然會精誠團結,互相幫助,共度難關。課堂中充分體現(xiàn)了教師的主導作用和學生的主體地位。問題我定,解決問題的方法由你想的課堂定位使原本被動、沉悶的課堂大為改觀,學生學習的積極性、思維的深刻性、探究的精神均得到了培養(yǎng),這節(jié)課采用的“問題解決”的教學模式,遵循了“創(chuàng)設問題、提出問題→合作交流,探索規(guī)律→應用規(guī)律,解決實際問題”思路來組織教學過程。課堂教學改變過去那種“接受式”學習方式,形成一種對知識進行主動探究的學習方式。
三、精講精練,提高課堂教學效果
講練結合這種方法有利于讓學生動口、動手、動腦,在參與中思考、學習,充分利用課堂四十五分鐘,不僅可以減輕學生負擔,還能調(diào)動學生學習積極性。要想在有限的45分鐘內(nèi)達到練習的目的,教師必須把握好上課的前20分鐘,因為這一時段是學生注意力集中的最佳時機首先,上課時教師要精講,在課堂上以訓練為主。讓學生多動腦,勤動筆。有句話說得好“數(shù)學,只有自己做對了,才叫做真正學會了”。要想使練習效果明顯,課前必須精心篩選與本課新授內(nèi)容緊密相關的練習。練習題要有一定的坡度,遵循由易到難的原則。同時練習要適量,確保學生能完成。對于新授課的課堂練習必須規(guī)范學生的表達,在第一次必須形成正確的表達,不能只對答案不注重表達習慣,練習中及時發(fā)現(xiàn)學生存在的問題及時糾正。作業(yè),教師一定要批改,及時發(fā)現(xiàn)問題,及時反饋。
四、復習要有計劃,有目的,要因材施教
無論是平時復習,還是中考前的復習,教師必須制定一個比較詳細的復習計劃。計劃具體到每周、每一天復習的內(nèi)容,每一課時解決的知識點,每一課時要解決的問題。有了計劃,就要嚴格按計劃行事。復習時要因材施教,可以將一些學習有困難的同學編在同一組,留給他們一些基礎的知識練習,比如計算題,書上的練習題,他們可以反復練習,達到基礎知識的牢固掌握。而其他同學,可以跟教師練習一些有難度的題,這樣可以有助于優(yōu)生思維的拓展。
總的來說,我認為提高數(shù)學教學質(zhì)量不是靠增加課時,要靠提高每堂課的效益,減少無效勞動造成的時間浪費。要想提高課堂效益,必須認真鉆研新課程標準、教學要求、教材內(nèi)容,對必學內(nèi)容、選學內(nèi)容、基本要求、較高要求等,每年的課程變化都要心中有數(shù)。
第10篇 初中數(shù)學知識點總結之角的平分線 1700字
初中數(shù)學知識點總結之角的平分線
角的平分線是到角的兩邊距離相等的所有點的集合。接下來為大家整合的是上海初中數(shù)學角的平分線知識點總結。
角的平分線
定理1 在角的平分線上的點到這個角的兩邊的距離相等
定理2 到一個角的兩邊的距離相同的點,在這
初中數(shù)學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內(nèi)容學習,希望同學們很好的掌握下面的內(nèi)容。
平面直角坐標系
平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內(nèi)容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸或y軸統(tǒng)稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內(nèi)容都能很好的掌握,同學們認真學習吧。
初中數(shù)學知識點:點的坐標的性質(zhì)
下面是對數(shù)學中點的坐標的性質(zhì)知識學習,同學們認真看看哦。
點的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的'一個點。
對于平面內(nèi)任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應點a,b分別叫做點c的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點c的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質(zhì)知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數(shù)學知識點:因式分解的一般步驟
關于數(shù)學中因式分解的一般步驟內(nèi)容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們會考出好成績。
初中數(shù)學知識點:因式分解
下面是對數(shù)學中因式分解內(nèi)容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數(shù)項注意查項數(shù)
③雙重括號化成單括號
④結果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內(nèi)同類項合并。
通過上面對因式分解內(nèi)容知識的講解學習,相信同學們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學們的學習很好的幫助。
第11篇 初中數(shù)學:數(shù)據(jù)波動與分布規(guī)律的知識點總結 1700字
初中數(shù)學:數(shù)據(jù)波動與分布規(guī)律的知識點總結
各位熱愛數(shù)學的初中同學們要注意啦,初中數(shù)學知識點大餐的份量可是非常豐盛的哦。下面小編給大家?guī)淼氖浅踔袛?shù)學數(shù)據(jù)波動與分布規(guī)律知識點大全,有興趣的同學可以過來看看。更多更全的初中數(shù)學訊息盡在。
初中數(shù)學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內(nèi)容學習,希望同學們很好的掌握下面的內(nèi)容。
平面直角坐標系
平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內(nèi)容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的'兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸或y軸統(tǒng)稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內(nèi)容都能很好的掌握,同學們認真學習吧。
初中數(shù)學知識點:點的坐標的性質(zhì)
下面是對數(shù)學中點的坐標的性質(zhì)知識學習,同學們認真看看哦。
點的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應點a,b分別叫做點c的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點c的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質(zhì)知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數(shù)學知識點:因式分解的一般步驟
關于數(shù)學中因式分解的一般步驟內(nèi)容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們會考出好成績。
初中數(shù)學知識點:因式分解
下面是對數(shù)學中因式分解內(nèi)容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數(shù)項注意查項數(shù)
③雙重括號化成單括號
④結果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內(nèi)同類項合并。
通過上面對因式分解內(nèi)容知識的講解學習,相信同學們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學們的學習很好的幫助。
第12篇 初中數(shù)學知識點總結之平行線等分 1800字
有關初中數(shù)學知識點總結之平行線等分
初中數(shù)學知識點總結之平行線等分
三角形過一邊中點的直線平行第二邊平分第三邊。 也稱“一二三定理”。接下來為大家整合的是初中數(shù)學平行線等分線段知識點總結。
平行線等分線段
1、 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
2、推論1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰
3、推論2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊
知識拓展:經(jīng)過梯形一腰的中點且與底邊平行的直線必平分另一腰。
初中數(shù)學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內(nèi)容學習,希望同學們很好的掌握下面的內(nèi)容。
平面直角坐標系
平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內(nèi)容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸或y軸統(tǒng)稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內(nèi)容都能很好的掌握,同學們認真學習吧。
初中數(shù)學知識點:點的坐標的性質(zhì)
下面是對數(shù)學中點的坐標的性質(zhì)知識學習,同學們認真看看哦。
點的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應點a,b分別叫做點c的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點c的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質(zhì)知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數(shù)學知識點:因式分解的一般步驟
關于數(shù)學中因式分解的一般步驟內(nèi)容學習,我們做下面的.知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們會考出好成績。
初中數(shù)學知識點:因式分解
下面是對數(shù)學中因式分解內(nèi)容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數(shù)項注意查項數(shù)
③雙重括號化成單括號
④結果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內(nèi)同類項合并。
通過上面對因式分解內(nèi)容知識的講解學習,相信同學們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學們的學習很好的幫助。
第13篇 初中一年級數(shù)學教學工作總結 2550字
本期在教學中我采用的是“啟導·活動教學法”,“啟導·活動教學法”實驗證明,“啟導·活動教學法”在使學生養(yǎng)成自學習慣,掌握自學方法,培養(yǎng)自學能力,提高學習成績及能力遷移等諸多方面是有成效的,它是有強大生命力的。
下面對我本期的教學工作作一個比較細致的總結:
(一)學生初上路階段
初一學生剛從小學升入初中,要使學生逐漸習慣自學方法,除認真做好學生的思想教育工作,明確學習目的,端正學習態(tài)度外,先要做好“領讀工作”,通過示范性的領讀,要逐漸教會學生按“三讀”的要求去閱讀、理解、掌握教材,在教材上作眉批,教會學生做練習和核對答案的方法和要求,并作出示范,在這一階段中,我盡快認識、了解學生,掌握了學生的基本情況。
(二)逐步進入正常后的階段
我在教學中的主要環(huán)節(jié)是以下幾方面:
1、課前準備工作
除認真鉆研教材,研究教材的重點、難點、關鍵,吃透教材外,還要深入了解學生,“啟導·活動教學法”按學生思維類型的二個方面敏捷和踏實,將學生分成敏捷而踏實,敏捷而不踏實,不敏捷而踏實,不敏捷而不踏實四種類型的學生,了解學生就是要全面掌握學生的各方面情況,特別要了解學生屬于哪一種學習類型。當然學生類型有它穩(wěn)定的一面,但也要考慮到學生通過學習會有變化,我根據(jù)不同類型的學生擬定了課堂上輔導方案,使課堂教學中的輔導有針對性,避免盲目性,提高了實效。
在了解學生中還要注意了解每個學生的知識水平、智力水平和個性心理品質(zhì),考慮影響學生學習的各種因素,并研究相應對策。 把教材和學生實際很好地結合起來,確定課堂上要講的主要內(nèi)容,并擬定指導讀書的讀書提綱。
2、課堂工作
(1)首先搞好組織教學,這是順利進行正常教學的保證。
數(shù)學“啟導·活動教學法”的組織教學與傳統(tǒng)的組織教學有明顯的不同,我們知道,組織教學的任務就是把全班學生的注意力自始至終組織到當堂課的學習任務上來。傳統(tǒng)的課堂教學,更多地是教師將學生的注意力集中在教師的講授上,但是根據(jù)學生的年齡特征,一般地,初中學生,特別是低年級學生的注意力容易分散,注意的集中是相對的,分散是絕對的,因此,組織教學應貫穿于全部教學過程之中。
“在實驗的初期,教師組織教學的注意力應把重點放在教會學生自學方法,養(yǎng)成自學習慣上,以后逐漸落實在每個環(huán)節(jié)中(特別是學生自學活動中)。對不同類型的學生,有針對性,有目的的具體指導、輔導,加強個別要求。例如:在學生根據(jù)教師布置的學習內(nèi)容、要求,自學課文,完成練習這一環(huán)節(jié)中,教師就在善于根據(jù)每個學生的不同情況,注意力集中的程度,個別地、具體地有針對性的組織教學,并且常通過教學機智,采用暗示的手法去達到目的。
在“啟導·活動教學法”的組織教學中,教師要能真正起作用,達到目的,師生之間的感情因素非常重要,因此,教師的威信將起到較大作用。教師既要親切又要嚴肅,要使課堂氣氛活而不亂,盡量避免學生產(chǎn)生壓抑和過度焦慮,使學生在和諧的氣氛中發(fā)揮出正常的智力水平,高效地進行學習。
(2)其次是復習舊課,引入新課。根據(jù)學生掌握知識的情況以及涉及本課的有關知識進行復習,要簡明扼要,抓住要點,點穿實質(zhì),然后,自然過渡,引入新課,簡述學習課題,布置學習內(nèi)容,出示讀書提綱,明確學習要求,以保證教學過程的計劃性和完整性。充分地照顧了學生學習上的差異,這樣學生可以快者快學,慢者慢學,達到了班集體與個別化相結合。
(3)再次是學生根據(jù)教師要求獨立進行學習活動。先按要求“三讀”即粗、細、精讀教材,概括段意并眉批,在理解教材內(nèi)容的基礎上做練習,每做一道大題或一個練習就核對答案,改錯,及時反饋學習效果,自己不能解決的問題及時請教老師。
學生獨立進行學習活動了,教師做什么呢?我們說自學,并不是不要教師,自學從來都不是無師自通的。在學生自學、自練、自檢等獨立活動中,教師一方面巡回輔導,另一方面根據(jù)備課時所掌握的學生情況,具體地,有目的地,有針對性地幫助指導每一個學生。具體地說,對于學習思維品質(zhì)不踏實的學生,要注意用具體的事例,通過嚴格要求,逐漸培養(yǎng)他們的踏實品質(zhì);對于學習成績優(yōu)異者,應指導他們向深度、廣度發(fā)展,向他們提出進一步深入學習的要求,并具體落實,讓他們能夠充分利用課堂上這段寶貴的時間,充分發(fā)揮其潛力,提高效率,超額超前完成學習任務,對于學習基礎較差,思維不敏捷的學生,應加強重點輔導。我們的“啟導·活動教學法”教學的特色不僅體現(xiàn)在“自學”上,而且還體現(xiàn)在“輔導”上,因此,我們提倡主動地“輔導”,積極的“輔導”,而反對那種等待學生舉手,提問,教師幫助回答這種被動消極的“輔導”。在這里教師掌握每個學生的情況和把握整個課堂,始終處于積極主動的狀態(tài)非常重要。
在教師主動積極的輔導中,要善于根據(jù)學生的不同情況,設計不同的問題,采用不同的方式,主動地去引導、啟發(fā)學生,可問他是怎樣想的?怎佯理解的?聽一聽他們的見解掌握他們的情況,并進行有針對性,切合實際的個別輔導,真正做到因材施教。這對于提高差生,大面積提高初中數(shù)學教學質(zhì)量是會起到一定作用的。差生形成的原因雖然是多方西的,但是學生的學習基礎,學習興趣,學習動機,學習方法等方面是值得引起我們注意的問題。在“啟導·活動教學法”教學的課堂教學中,教師加強了對差生的輔導,耐心地幫助他們,一方面解決了學習中產(chǎn)生的問題,補了基礎,教了方法,更重要的是增強了他們的信心,提高了他們的興趣,對他們精神上是一個很大的激勵,他們感到教師關心他,從未放棄他,只要老師堅持不懈,會逐漸增強學生的學習興趣,從而產(chǎn)生強烈的學習動機,不斷地提高學習水平。我們深信,對于差生的事,只要我們的工作真正做到家,在自學輔導教學中,是會有所收獲的,這一點是傳統(tǒng)的課堂以講授為主的教學難以做到的。
我們還知道,人的視覺是主動的分析器,它主動地接受吸收外界信息,效果較好,而聽覺是被動的分析器,它被動地接受外界信息,效果不佳,并且在學習過程中,視覺的對象大多不會隨時間、空間而消失,可以重復,而聽覺的對象很容易隨空間、時間而消失,一次未聽懂,不可能再重復多次。基于上述原理,“啟導·活動教學法”采用啟、讀、練、知、結相結合的教學原則,使刺激多樣化,并且以視覺為主,學生在學習過程中,通過從不同分析器傳入的信息到達大腦皮層的不同區(qū)域,引起反映,輪換地興奮與抑制,學生自始至終能處于一種積極進取狀態(tài),因此,能很好地發(fā)揮其主動性和積極性,課堂氣氛活躍,學習效果較好。
第14篇 初中數(shù)學一元二次方程知識點總結 900字
初中數(shù)學一元二次方程知識點總結
鑒于數(shù)學知識點的重要性,小編為您提供了這篇七年級數(shù)學一元二次方程知識點總結,希望對同學們的數(shù)學有所幫助。
學生已經(jīng)掌握了用一元一次方程解決實際問題的方法。在解決某些實際問題時還會遇到一種新方程 一元二次方程。一元二次方程一章就來認識這種方程,討論這種方程的解法,并運用這種方程解決一些實際問題。
本章首先通過雕像設計、制作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學生通過數(shù)值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會,并給出一元二次方程的根的概念,
22.2降次解一元二次方程一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。
(1)在介紹配方法時,首先通過實際問題引出形如 的方程。這樣的方程可以化為更為簡單的形如 的方程,由平方根的概念,可以得到這個方程的解。進而舉例說明如何解形如 的方程。然后舉例說明一元二次方程可以化為形如 的方程,引出配方法。最后安排運用配方法解一元二次方程的例題。在例題中,涉及二次項系數(shù)不是1的一元二次方程,也涉及沒有實數(shù)根的一元二次方程。對于沒有實數(shù)根的一元二次方程,學了公式法以后,學生對這個內(nèi)容會有進一步的理解。
(2)在介紹公式法時,首先借助配方法討論方程 的解法,得到一元二次方程的求根公式。然后安排運用公式法解一元二次方程的例題。在例題中,涉及有兩個相等實數(shù)根的一元二次方程,也涉及沒有實數(shù)根的'一元二次方程。由此引出一元二次方程的解的三種情況。
(3)在介紹因式分解法時,首先通過實際問題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運用因式分解法解一元二次方程的例題。最后對配方法、公式法、因式分解法三種解一元二次方程的方法進行小結。
22.3實際問題與一元二次方程一節(jié)安排了四個探究欄目,分別探究傳播、成本下降率、面積、勻變速運動等問題,使學生進一步體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學模型。
這篇七年級數(shù)學一元二次方程知識點總結是精品小編精心為同學們準備的,祝大家學習愉快!
第15篇 初中數(shù)學幾大知識點總結 1850字
初中數(shù)學幾大知識點總結
初中數(shù)學知識點總結:軸對稱與軸對稱圖形的性質(zhì)
軸對稱與軸對稱圖形的性質(zhì)知識,下面是此知識的講解。
軸對稱與軸對稱圖形的性質(zhì)
①關于某直線對稱的兩個圖形是全等形。
②如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線。
③軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
④如果兩個圖形的對應點連線被同條直線垂直平分,那么這兩個圖形關于這條直線對稱。
⑤兩個圖形關于某條直線成軸對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上。
以上的講解學習,希望同學們都能很好的掌握,相信對同學們的復習學習一定會有很好的幫助的。
初中數(shù)學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內(nèi)容學習,希望同學們很好的掌握下面的內(nèi)容。
平面直角坐標系
平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的'規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內(nèi)容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸或y軸統(tǒng)稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內(nèi)容都能很好的掌握,同學們認真學習吧。
初中數(shù)學知識點:點的坐標的性質(zhì)
下面是對數(shù)學中點的坐標的性質(zhì)知識學習,同學們認真看看哦。
點的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應點a,b分別叫做點c的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點c的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質(zhì)知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數(shù)學知識點:因式分解的一般步驟
關于數(shù)學中因式分解的一般步驟內(nèi)容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:一提、二套、三分組、四十字。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們會考出好成績。
初中數(shù)學知識點:因式分解
下面是對數(shù)學中因式分解內(nèi)容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數(shù)項注意查項數(shù)
③雙重括號化成單括號
④結果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內(nèi)同類項合并。
通過上面對因式分解內(nèi)容知識的講解學習,相信同學們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學們的學習很好的幫助。