歡迎光臨管理范文網
當前位置:工作總結 > 總結大全 > 總結范文

各單元總結(三篇)

發(fā)布時間:2023-01-31 18:45:06 查看人數:99

各單元總結

【第1篇 總結了些三年級英語上冊各單元知識點

導語在中國,英語是一門主要的課程,與語文數學并列,是求學者永遠離不開必學的一門課程。中國不是英語發(fā)源國家,也缺少語言環(huán)境,所以就要求孩子們在自身打好了漢語基礎上,早一些接觸和學習英語,自主地學、多形式地學和練、充滿興趣地去學,從小就學,因為英語是門語言,語言一定要靠積累和運用。而面對應試教育,考試也是離不開的話題。學習好英語可以從容面對英語考試,而英語試卷也對孩子學習英語有一定輔助作用,倆者彼此有用。以下是為學子們準備的相關資料,希望可以幫助到您。

【第2篇 總結二年級數學上冊各單元知識點

導語數學可以滿足人們日常生活、工作中計數、計算以及推理需要。鍛煉人的思維水平以及思維品質,如計算能力、邏輯思維能力、空間想象能力。數學學習可以為進一步學習自然科學和社會科學提供必要的技術支持。學習數學可以體會和學習數學工作者身上體現出來的科學、嚴謹的科學態(tài)度和作風,提高自身科學素養(yǎng)。處在現代這個高新技術層出不窮和競爭日益激烈的時代,每個人都應該掌握一定量的數學知識來提高自己在社會競爭力。以下是整理的相關資料,希望對您有所幫助。

第一單元

知識要點歸納:

1、常用的長度單位:米、厘米。

2、測量較短物體通常用厘米作單位,測量較長物體通常用米作單位。

3、測量物體長度的方法:將物體的左端對準直尺的“0”刻度,看物體的右端對著直尺上的刻度是幾, 這 個物體的長度就是幾厘米。

4、米和厘米的關系:1米=100厘米 100厘米=1米

5、線段

⑴線段的特點:①線段是直的;②線段有兩個端點;③線段有長有短,是可以量出長度的。

⑵畫線段的方法:先用筆對準尺子的’0”刻度,在它的上面點一個點,再對準要畫到的長度的厘米刻度,在它的上面也點一個點,然后把這兩個點連起來。

⑶測量物體的長度時,當不是從“0”刻度量起時,要用終點的刻度數減去起點的刻度數。

6、填上合適的長度單位。

小明身高1(米)30(厘米) 練習本寬13(厘米) 鉛筆長17(厘米)

黑板長2(米) 圖釘長1(厘米) 一張床長2(米)

一口井深3(米) 學校進行100(米)賽跑 教學樓高25(米)

寶寶身高80(厘米) 跳繩長2(米) 一棵樹高3(米)

一把鑰匙長5(厘米) 一個文具盒長24(厘米) 講臺高90(厘米)

門高2(米) 教室長12(米) 筷子長20(厘米)

第二單元

知識要點歸納:

一、兩位數加兩位數

1、兩位數加兩位數不進位加法的計算法則:把相同數位對齊列豎式,在把相同數位上的數相加。

2、兩位數加兩位數進位加法的計算法則:①相同數位對齊;②從個位加起;③個位滿十向十位進1。

3、筆算兩位數加兩位數時,相同數位要對齊,從個位加起,個位滿十要向十位進“1”,十位上的數相加時,不要遺漏進上來的“1”。

4、和 = 加數 + 加數 一個加數 = 和 - 另一個加數

二、兩位數減兩位數

1、兩位數減兩位數不退位減的筆算:相同數位對齊列豎式,再把相同數位上的數相減。

2、兩位數減兩位數退位減的筆算法則:①相同數位對齊;②從個位減起;③個位不夠減,從十位退1,在個位上加10再減。

3、筆算兩位數減兩位數時,相同數位要對齊,從個位減起,個位不夠減,從十位退1,個位加10再減,十位計算時要先減去退走的1再算。

4、差=被減數-減數 被減數=減數+差 減數=被減數+差

三、連加、連減和加減混合

1、連加、連減

連加、連減的筆算順序和連加、連減的口算順序一樣,都是從左往右依次計算。

①連加計算可以分步計算,也可以寫成一個豎式計算,計算方法與兩個數相加一樣,都要把相同數位對齊,從個位加起。

②連減運算可以分步計算,也可以寫成一個豎式計算,計算方法與兩個數相減一樣,都要把相同數位對齊,從個位減起。

2、加減混合

加、減混合算式,其運算順序、豎式寫法都與連加、連減相同

3、加、減法估算

在日常生活中有些情況不需要進行精確計算,只是算出大致的結果就可以了,在這種情況下就需要估算。估算時,把這個數估成與他最接近的整十數再去計算。

4、加減混合運算寫豎式時可以分步計算,方法與兩個數相加(減)一樣,要把相同數位對齊,從個位算起;也可以用簡便的寫法,列成一個豎式,先完成第一步計算,再用第一步的結果加(減)第二個數。

四、解決問題(應用題)

1、 步驟:①先讀題 ②列橫式,寫結果,千萬別忘記寫單位(單位為:多少或者幾后面的那個字或詞) ③作答。

2、求比一個數多幾的數的應用題用加法;求比一個數少幾的數的應用題用減法計算(注意:用大的數減小的數)。

3、關于提問題的題目,可以這樣提問:

①…….和…… 一共…….?

②……比……..多多少/幾……?

③……比……..少多少/幾……?

第三單元

知識要點歸納:

1、角:像紅領巾、三角板、鐘面、等實物上都有大大小小不同的角。

2、角各部分的名稱:一個角有一個頂點,兩條邊。如右圖。 頂點

3、角的特點:①一個頂點,兩條邊(兩邊是直的);②它的兩條邊是射線不是線段;③射線就是只有一個端點,不能測量出長度。

4、用直尺畫角的方法:畫角時先確定一個點,用直尺向不同的方向畫兩條線,就畫成一個角。

5、角的大小與兩條邊的長短無關,只和兩條邊張開的寬度有關。

6、角的兩邊張得越大,角就越大。

① ② ③ 按從小到大排列的順序是:①﹤②﹤③

7、★畫直角的方法:①畫一個點 ②從這點起畫一條直線

③把三角板的一條直角邊與所畫的直線重合,直角頂點與所畫的點重合

④沿三角板另一條直角邊畫一條直線 ⑤畫完直角要標上直角符號

8、要知道一個角是不是直角,可以用三角板上的直角比一比:頂點對頂點,一邊對一邊,再看另一邊。

9、三角板上的3個角中,有1個是直角。正方形、長方形都有4個角,都是直角。

第四單元

知識要點歸納:

1、乘法的含義

乘法是求幾個相同加數連加的和的簡便算法。如:計算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.

2、乘法算式的寫法和讀法

⑴連加算式改寫為乘法算式的方法。求幾個相同加數的和,可以用乘法計算。寫乘法算式時,可以用乘法計算。寫乘法算式時,可以先寫相同的加數,然后寫乘號,再寫相同加數的個數,最后寫等號與連加的和;也可以先寫相同加數的個數,然后寫乘號,再寫相同加數,最后寫等號與連加的和。

如:4+4+4=12改寫成乘法算式是4×3=12或3×4=12

4 × 3 = 12 或 3 × 4 = 12

︰ : : : : :

相同加數 相同加數的個數 和 相同加數的個數 相同加數 和

⑵乘法算式的讀法。讀乘法算式時,要按照算式順序來讀。如:6×3=18讀作:“6乘3等于18”。

3、乘法算式中各部分的名稱及實際表示的意義

在乘法算式里,乘號前面的數和乘號后面的數都叫做“因數”;等號后面的得數叫做“積”。

4、乘法算式所表示的意義

求幾個相同加數的和,用乘法計算比較簡單。一道乘法算式表示的就是幾個相同加數連加的和。如:

4×5表示5個4相加或4個5相加。

5、加法寫成乘法時,加法的和與乘法的積相同。

6、乘法算式中,兩個因數交換位置,積不變。

7、算式各部分名稱及計算公式。

乘法:因數×因數=積

加法:加數+加數=和 和—加數=加數

減法:被減數—減數=差 被減數=差+減數 減數=被減數—差

8、在9的乘法口訣里,幾乘9或9乘幾,都可看作幾十減幾,其中“幾”是指相同的數。

如:1×9=10—1 9×5=50—5

9、看圖,寫乘加、乘減算式時:

乘加:先把相同的部分用乘法表示,再加上不相同的部分。

乘減:先把每一份都算成相同的,寫成乘法,然后再把多算進去的減去。

計算時,先算乘,再算加減。

如:

加法:3+3+3+3+2=14 乘加:3×4+2=14 乘減:3×5-1=14

10、“求一個數的幾倍是多少”用乘法計算,用:這個數×倍數或倍數×這個數。

11、有幾個相同加數,就是這個相同加數的幾倍。如:3個 5,就是5的3倍。

第五單元

一、軸對稱圖形和對稱軸

1、如果一條圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形,折痕所在的直線叫對稱軸。

2、對稱軸兩邊的部分形狀相同、大小相同、位置相同、方向相反即能夠完全重合 。

3、畫對稱軸時要用虛線。

4、長方形、正方形、圓都是對稱圖形。

長方形有2條對稱軸。 正方形有4條對稱軸。 圓有無數條對稱軸。

二、鏡面對稱

如湖面的倒影、照鏡子都是鏡面對稱現象。湖面的倒影是相對水平平面的對稱,而照鏡子是相對豎直平面的對稱。照鏡子時,鏡子內外的人上下、前后位置不會發(fā)生改變,而左右位置發(fā)生對換。

三、補充對稱圖形。

畫對稱圖形的另一半時,可以先在格子中找到每條線段的兩個端點的對稱點,然后用直線連接。在對稱軸上的點,其對稱點還是這個點。對稱軸是豎直方向的,圖形左右對稱;對稱軸是水平方向的,圖形上下對稱。

【第3篇 小學五年級下冊數學各單元重點知識點總結

小學五年級下冊數學各單元重點知識點總結

重點知識

軸對稱

1.軸對稱的意義:把一個圖形沿著某一條直線對折,如果它能夠與另一個圖形完全重合,那么就說這兩個圖形成軸對稱;這條直線就是對稱軸。兩個圖形完全重合時的點叫做對應點;互相重合的角叫做對應角,互相重合的線段叫做對應線段。

2.五年級下冊數學各單元重點知識點:軸對稱的性質:對應點到對稱軸的距離相等。

3.軸對稱的特征:沿對稱軸對折,對應點、對應線段、對應角重合。

旋轉 1.旋轉的意義:物體繞著某一點運動,這種運動叫做旋轉。

2.圖形旋轉方向:鐘表中指針的運動方向成為順時針旋轉;反之,稱逆時針旋轉。

3.圖形旋轉的性質:圖形繞著某一點旋轉一定的度數,圖形中的對應點、對應線段都旋轉相應的度數,相對應的點到旋轉點的距離相等,對應角相等。

4.圖形旋轉的特征:圖形旋轉后,形狀、大小都沒有發(fā)生變化,只是位置變了。

設計圖案的基本方法 1.設計圖形的基本方法:利用平移、旋轉或對稱,可以設計簡單而美麗的圖案

2.運用平移設計圖案的方法:(1)選好基本圖形;(2)確定平移的距離;(3)確定平移方向;(4)畫出平移后的圖形

3.運用平旋轉計圖案的方法:(1)選好基本圖形;(2)確定旋轉點;(3)定好旋轉角度;(4)沿每次旋轉后的基本圖形的邊緣畫圖。

4.運用對稱設計圖案的方法:(1)選好基本圖形;(2)定好對稱軸;(3)畫出基本圖形的對稱圖形。

五年級(下)各單元重點知識歸納表(第一稿)

第一單元:圖形的變換

第二單元:因數與倍數

重點知識

因數和倍數

1.因數和倍數的意義:如果ab=c(a、b、c都不為0的整數),那么a、b就是c的因數,c就是a、b的倍數。

2.數與倍數的關系:因數和倍數是兩個不同的該概念,但又是一對相互依存的概念,不能單獨存在。

3.找一個數的因數的方法:(1)列乘法算式:根據因數的意義,有序地寫出兩個乘積是此數的所有乘法算式,乘法算式中每個因數就是該數的因能數。(2)列除法算式:用此數除以大于1等于1而小于等它本身的整數,所得的商是整數而無余數,這些除數和商都是該數的因數。

4.找一個數的倍數的方法:求一個數的倍數,就是用這個數,依次與非零自然數相乘,所得之數就是這個數的倍數。

2、3、5的倍數的特征 1.2的倍數的特征:個位上是0、2、4、6、8的數都是2的倍數。

2.奇數和偶數的意義:在自然數中,是2的倍數的數叫做偶數,不是2的倍數的數叫做奇數。

3.奇數、偶數的運算性質:奇數奇數=偶數,偶數偶數=偶數,奇數偶數=奇數(大減小),奇數奇數=奇數,奇數偶數=偶數,偶數偶數=偶數。

4.5的倍數的特征:個位上是0或5的數都是5的倍數.

5.3的倍數的特征:一個數各位上的數的和是3的倍數,這個數就是3的倍數。

質數和合數 1.質數和合數的意義:一個數,如果只有1和它本身兩個因數,這樣的數叫做質數(或素數);一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數。

2.質因數:每個合數都可以寫成幾個質數相乘的形式,其中每個質數都是這個合數的質因數。

3.分解質因數:把一個合數用質數相乘的形式表是出來,就是分解質因數。

4.分解質因數的方法:(1):樹枝圖式分解法;(2)短除法分解。

第三單元:長方體和正方體

重點知識

長方體(正方體)的特征 1.長方體的特征:有6個面,相對的面完全相同;有12條棱,相對的棱長度相等;有8個頂點

2.正方體的特征:正方體的6個面完全相同;12條棱的長度全相等;有8個頂點。

3.長方體長、寬、高的意義:相交于同一頂點的三條棱的長度分別叫做長方體的長、寬、高。

長方體和正方體的表面積 1.表面積的意義:長方體或正方體6個或5個面的總面積,叫做它的表面積。

2.長方體的表面積的計算方法:(2個)

3.正方體表面積的計算方法:正方體的表面積=棱長26

長方體和正方體的體積 1.體積的意義:物體所占的空間的大小叫做體積。

2.體積單位:立方米、立方分米、立方厘米;字母表示:m3,dm3,cm3。

3.體積單位間的進率:1 m3 =1000dm3 dm3 =1000cm3.

4.容積的意義:箱子、油桶等所能裝下物體的體積,叫做箱子等的容積。

5.容積的單位和容積單位之間的進率:1l=1000ml

6.容積單位和體積單位之間的換算:1l= dm3 1 cm3.=1 ml

7.長方體體積計算公式和正方體體積計算公式。

8.容積與體積的計算方法相同,只是要從里面量它的長、寬和高。

第四單元:分數的意義和性質

具體內容 重點知識 學生的實際學習困難

分數的產生和意義 1.單位1的意義:一個物體、一些物體都可以看作一個整體,可以用自然數1來表示,通常把它叫做單位1。

2.分數的意義:把單位1平均分成若干份,表示這樣的一份或幾份的數叫做分數。

3.分數單位意義:把單位1平均分成若干份,表示其中一份的數叫做分數單位。

4.分數與除法的關系:被除數除數=被除數除數 ,反來,分數也可以看作兩個數相除,分數的分子相等于被除數,分母相等于除數,分數相等于除號。

5.求一個數是(占)另一個數的幾分之幾的問題的解題辦法:用一個數除以另一個數。

真分數和假分數 1.真分數的意義:分子比分母小的分數叫做真分數。

2.真分數的特征:真分數﹤1。

3.假分數的意義:分子比分母大或等于分母的分數叫做假分數。

4.假分數的特征:假分數≦1。

5.帶分數的意義:由整數(不包括0)和真分數合成的數叫做真分數。

6.帶分數的讀法:先讀整數部分,再讀分數部分,中間加又字。

7.帶分數的寫法:先寫整數部分,再寫分數部分,分數部分的分數線與整數的中間對齊。

8.假分數化成整數或帶分數的方法:用分子除以分母。當分子是分母倍數時,能化成整數;當分子不是分母的倍數時,能化成帶分數,商是帶分數的整數部分,余數是分數部分的分子,分母不變。

分數的基本性質 1.分數的基本性質:分數的分子和分母同時乘或者除以一個相同的數(0除外),分數的大小不變,這就是分數的基本性質。

2.分數基本性質的運用:可以把不同分母的分數化成同分母分數,也可以把一個分數化成指定分母的分數。

約分 1.公因數和最大公因數的意義:幾個數公有的因數,叫做這幾個數的公因數;其中最大的一個,叫做它們的最大公因數。

2.求兩個數的最大公因數的方法:(1)列舉法;(2)先找出兩個數中較小數的因數,再圏出是另一個數的因數,再看哪一個最大;(3)分解質因數法;(4)短除法。

3.求兩個數的最大公因數的特殊方法:(1)當兩個數成倍數關系時,較小數是這兩個數的最大公因數。(2)當兩個數是互質數時,最大公因數是1。

4.約分的意義:把一個分數化成和它相等,但分子和分母都比較小的分數,叫做分數。

5.最簡分數的意義:分子和分母只有公因數1的分數。

6.約分的方法:(1)逐步約分;(2)一次約分。

7.公因數只有1的兩個數,叫做互質數。

通分 1.公倍數和最小公倍數的意義:幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個數,叫做最小公倍數。

2.求兩個數最小公倍數的方法:(1)列舉法(2)先求出兩個數中較大數的倍數,按從小到大的順序圈出較小數的倍數,第一個圏的就是它們的最小公倍數(3)分解質因數法(4)短除法。

3. 求兩個數的'最小倍數的特殊方法:當兩個數成倍數關系時,較大數是這兩個數的最小公倍數。(2)當兩個數是互質數時,這兩個數的乘積就是它們最小公倍數。

4.通分的意義:把異分母的分數分別化成和原來分數相等的的同分母分數,叫做通分。

5.通分的方法:通分時用原分母的公倍數作公分母,一般選用最小公倍數作公分母,然后把各分數化成用這個最小公分母作分母的分數。

分數和小數的互化 1.小數化成分數的方法:有限小數可以直接寫成分母是10、100、1000的分數。原來有幾位小數,就在1后面寫幾個零作分母,把原來的小數點去掉作分子。能約分的要約分,化成最簡分數。

2.分數化成小數的方法:(1)分母是10,100,1000的分數化成小數,可以直接去掉分母,看分母1后面有幾個零,就在分子中從最后一位起向左數出幾位,點上小數點。(2)分母不是10,100,1000的分數化成小數,用分子除以分母,除不盡時,按四舍五入法保留幾位小數。

第五單元:分數的加法和減法

重點知識

同分母分數加、減法

1.分數加法的意義:和整數加法的意義相同,就是把兩個數合并成一個數的運算。

2.分數減法的意義:與整數減法的意義相同,已知兩個數的和與其中的一個加數,求另一個加數的運算。

3.分數加、減法的計算方法:分母不變,分子相加減。

4.同分母分數連加的計算方法:從左到右依次計算,也可以直接把加數的分子連加起來,分母不變。

5.同分母分數連減的計算方法:從左到右依次計算,也可以直接用被減數的分子連續(xù)減去兩個減數的分子,分母不變。

異分母分數加、減法 異分母分數加、減法的計算方法:一般先通分,化成同分母的分數,然后按照同分母分數加、減法的方法計算。

分數加減混合運算 1.分數加減混合運算的順序:與整數加減混合運算的順序相同。沒有括號的,按照從左到右的順序進行計算;有括號的,先算括號里的,然后算括號外的

2.分數加法的簡算:整數加法的運算定律在分數加法中同樣適用。

第五單元:統(tǒng)計

重點知識

統(tǒng)計

1.眾數的意義:在一組數據中,出現次數最多的數,是這組數據的眾數。

2.眾數的特征:能夠反映一組數據的集中情況。

3.復式折線統(tǒng)計圖:在計量過程中存在兩組數據,而又需要在一個統(tǒng)計圖中表示這兩組數據時,就要用兩種不同形式的折線來表示不同數量變化情況的折線統(tǒng)計圖。

4. 復式折線統(tǒng)計圖的特點:能表示兩組數據數量的多少,數量的增減變化情況,還能比較兩組數據的變化趨勢。

5.復式折線統(tǒng)計圖的制作:(1)根據兩組數據量多少和圖紙大小,畫出兩條相互垂直的射線;(2)在水平射線上確定好各點的距離,分配各點的位置;(3)在與水平射線垂直的射線上,根據數據大小的具體情況,確定單位長度表示的數量;(4)用不同的圖例表示兩組不同的數據;(5)按照數據大小描出各點,再用線段順次連接;(6)標出題目,注明單位、日期。

數學廣角

重點知識 找次品的最優(yōu)方法:把待測物體分成3份,要分得盡量平均,不能夠平均分的,也應該使多的一份與少的一份只相差1.

各單元總結(三篇)

小學五年級下冊數學各單元重點知識點總結重點知識軸對稱1.軸對稱的意義:把一個圖形沿著某一條直線對折,如果它能夠與另一個圖形完全重合,那么就說這兩個圖形成軸對稱;這條直線…
推薦度:
點擊下載文檔文檔為doc格式

相關各單元信息

  • 各單元總結(三篇)
  • 各單元總結(三篇)99人關注

    小學五年級下冊數學各單元重點知識點總結重點知識軸對稱1.軸對稱的意義:把一個圖形沿著某一條直線對折,如果它能夠與另一個圖形完全重合,那么就說這兩個圖形成軸對稱 ...[更多]