- 目錄
【第1篇 2023高考數(shù)學(xué)知識點總結(jié):指數(shù)函數(shù)、函數(shù)奇偶性
指數(shù)函數(shù)
(1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
(2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。
(3)函數(shù)圖形都是下凹的。
(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
(5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數(shù)的曲線從分別接近于y軸與_軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于y軸的正半軸與_軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6)函數(shù)總是在某一個方向上無限趨向于_軸,永不相交。
(7)函數(shù)總是通過(0,1)這點。
(8)顯然指數(shù)函數(shù)無界。
奇偶性
注圖:(1)為奇函數(shù)(2)為偶函數(shù)
定義
一般地,對于函數(shù)f(_)
(1)如果對于函數(shù)定義域內(nèi)的任意一個_,都有f(-_)=-f(_),那么函數(shù)f(_)就叫做奇函數(shù)。
(2)如果對于函數(shù)定義域內(nèi)的任意一個_,都有f(-_)=f(_),那么函數(shù)f(_)就叫做偶函數(shù)。
(3)如果對于函數(shù)定義域內(nèi)的任意一個_,f(-_)=-f(_)與f(-_)=f(_)同時成立,那么函數(shù)f(_)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。
(4)如果對于函數(shù)定義域內(nèi)的任意一個_,f(-_)=-f(_)與f(-_)=f(_)都不能成立,那么函數(shù)f(_)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。
說明:①奇、偶性是函數(shù)的整體性質(zhì),對整個定義域而言
②奇、偶函數(shù)的定義域一定關(guān)于原點對稱,如果一個函數(shù)的定義域不關(guān)于原點對稱,則這個函數(shù)一定不是奇(或偶)函數(shù)。
(分析:判斷函數(shù)的奇偶性,首先是檢驗其定義域是否關(guān)于原點對稱,然后再嚴格按照奇、偶性的定義經(jīng)過化簡、整理、再與f(_)比較得出結(jié)論)
③判斷或證明函數(shù)是否具有奇偶性的根據(jù)是定義
【第2篇 2023高考數(shù)學(xué)知識點總結(jié):對數(shù)函數(shù)性質(zhì)與定義
對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。
右圖給出對于不同大小a所表示的函數(shù)圖形:
可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=_的對稱圖形,因為它們互為反函數(shù)。
(1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。
(2)對數(shù)函數(shù)的值域為全部實數(shù)集合。
(3)函數(shù)總是通過(1,0)這點。
(4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。
(5)顯然對數(shù)函數(shù)無界。
【第3篇 2023高考數(shù)學(xué)知識點總結(jié):一次函數(shù)
一、定義與定義式:
自變量_和因變量y有如下關(guān)系:
y=k_+b
則此時稱y是_的一次函數(shù)。
特別地,當b=0時,y是_的正比例函數(shù)。
即:y=k_(k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì):
1.y的變化值與對應(yīng)的_的變化值成正比例,比值為k
即:y=k_+b(k為任意不為零的實數(shù)b取任何實數(shù))
2.當_=0時,b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與_軸和y軸的交點)
2.性質(zhì):(1)在一次函數(shù)上的任意一點p(_,y),都滿足等式:y=k_+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與_軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。
【第4篇 2023高考數(shù)學(xué)知識點總結(jié):集合知識點匯總
一.知識歸納:
1.集合的有關(guān)概念。
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性(a?a和a?a,二者必居其一)、互異性(若a?a,b?a,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數(shù)集:n,z,q,r,n_
2.子集、交集、并集、補集、空集、全集等概念。
1)子集:若對_∈a都有_∈b,則a b(或a b);
2)真子集:a b且存在_0∈b但_0 a;記為a b(或,且 )
3)交集:a∩b={_| _∈a且_∈b}
4)并集:a∪b={_| _∈a或_∈b}
5)補集:cua={_| _ a但_∈u}
注意:①? a,若a≠?,則? a ;
②若, ,則 ;
③若且 ,則a=b(等集)
3.弄清集合與元素、集合與集合的關(guān)系,掌握有關(guān)的術(shù)語和符號,特別要注意以下的符號:(1) 與、?的區(qū)別;(2) 與 的區(qū)別;(3) 與 的區(qū)別。
4.有關(guān)子集的幾個等價關(guān)系
①a∩b=a a b;②a∪b=b a b;③a b c ua c ub;
④a∩cub = 空集 cua b;⑤cua∪b=i a b。
5.交、并集運算的性質(zhì)
①a∩a=a,a∩? = ?,a∩b=b∩a;②a∪a=a,a∪? =a,a∪b=b∪a;
③cu (a∪b)= cua∩cub,cu (a∩b)= cua∪cub;
6.有限子集的個數(shù):設(shè)集合a的元素個數(shù)是n,則a有2n個子集,2n-1個非空子集,2n-2個非空真子集。
二.例題講解:
例1已知集合m={_|_=m+ ,m∈z},n={_|_= ,n∈z},p={_|_= ,p∈z},則m,n,p滿足關(guān)系
a) m=n p b) m n=p c) m n p d) n p m
分析一:從判斷元素的共性與區(qū)別入手。
解答一:對于集合m:{_|_= ,m∈z};對于集合n:{_|_= ,n∈z}
對于集合p:{_|_= ,p∈z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以m n=p,故選b。
分析二:簡單列舉集合中的元素。
解答二:m={…, ,…},n={…, , , ,…},p={…, , ,…},這時不要急于判斷三個集合間的關(guān)系,應(yīng)分析各集合中不同的元素。
= ∈n, ∈n,∴m n,又 = m,∴m n,
= p,∴n p 又 ∈n,∴p n,故p=n,所以選b。
點評:由于思路二只是停留在最初的歸納假設(shè),沒有從理論上解決問題,因此提倡思路一,但思路二易人手。
變式:設(shè)集合, ,則( b )
a.m=n b.m n c.n m d.
解:
當時,2k+1是奇數(shù),k+2是整數(shù),選b
例2定義集合a_b={_|_∈a且_ b},若a={1,3,5,7},b={2,3,5},則a_b的子集個數(shù)為
a)1 b)2 c)3 d)4
分析:確定集合a_b子集的個數(shù),首先要確定元素的個數(shù),然后再利用公式:集合a={a1,a2,…,an}有子集2n個來求解。
解答:∵a_b={_|_∈a且_ b}, ∴a_b={1,7},有兩個元素,故a_b的子集共有22個。選d。
變式1:已知非空集合m {1,2,3,4,5},且若a∈m,則6?a∈m,那么集合m的個數(shù)為
a)5個 b)6個 c)7個 d)8個
變式2:已知{a,b} a {a,b,c,d,e},求集合a.
解:由已知,集合中必須含有元素a,b.
集合a可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
評析本題集合a的個數(shù)實為集合{c,d,e}的真子集的個數(shù),所以共有個 .
例3已知集合a={_|_2+px+q=0},b={_|_2?4_+r=0},且a∩b={1},a∪b={?2,1,3},求實數(shù)p,q,r的值。
解答:∵a∩b={1} ∴1∈b ∴12?4×1+r=0,r=3.
∴b={_|_2?4_+r=0}={1,3}, ∵a∪b={?2,1,3},?2 b, ∴?2∈a
∵a∩b={1} ∴1∈a ∴方程_2+px+q=0的兩根為-2和1,
∴ ∴
變式:已知集合a={_|_2+b_+c=0},b={_|_2+m_+6=0},且a∩b={2},a∪b=b,求實數(shù)b,c,m的值.
解:∵a∩b={2} ∴1∈b ∴22+m?2+6=0,m=-5
∴b={_|_2-5_+6=0}={2,3} ∵a∪b=b ∴
又 ∵a∩b={2} ∴a={2} ∴b=-(2+2)=4,c=2×2=4
∴b=-4,c=4,m=-5
例4已知集合a={_|(_-1)(_+1)(_+2)>0},集合b滿足:a∪b={_|_>-2},且a∩b={_|1
分析:先化簡集合a,然后由a∪b和a∩b分別確定數(shù)軸上哪些元素屬于b,哪些元素不屬于b。
解答:a={_|-21}。由a∩b={_|1-2}可知[-1,1] b,而(-∞,-2)∩b=ф。
綜合以上各式有b={_|-1≤_≤5}
變式1:若a={_|_3+2_2-8_>0},b={_|_2+a_+b≤0},已知a∪b={_|_>-4},a∩b=φ,求a,b。(答案:a=-2,b=0)
點評:在解有關(guān)不等式解集一類集合問題,應(yīng)注意用數(shù)形結(jié)合的方法,作出數(shù)軸來解之。
變式2:設(shè)m={_|_2-2_-3=0},n={_|a_-1=0},若m∩n=n,求所有滿足條件的a的集合。
解答:m={-1,3} , ∵m∩n=n, ∴n m
①當時,a_-1=0無解,∴a=0 ②
綜①②得:所求集合為{-1,0, }
例5已知集合 ,函數(shù)y=log2(a_2-2_+2)的定義域為q,若p∩q≠φ,求實數(shù)a的取值范圍。
分析:先將原問題轉(zhuǎn)化為不等式a_2-2_+2>0在 有解,再利用參數(shù)分離求解。
解答:(1)若 , 在 內(nèi)有有解
令當 時,
所以a>-4,所以a的取值范圍是
變式:若關(guān)于_的方程 有實根,求實數(shù)a的取值范圍。
解答:
點評:解決含參數(shù)問題的題目,一般要進行分類討論,但并不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關(guān)鍵。