歡迎光臨管理范文網
當前位置:工作總結 > 總結大全 > 總結范文

全等三角形知識總結(四篇)

發(fā)布時間:2023-05-09 12:03:01 查看人數:90

全等三角形知識總結

【第1篇 全等三角形知識點總結

一、推論

以下判定,是由三個對應的部分組成,即全等三角形可透過以下定義來判定:

s.s.s. (side-side-side)(邊、邊、邊):各三角形的三條邊的長度都對應地相等的話,該兩個三角形就是全等三角形。

s.a.s. (side-angle-side)(邊、角、邊):各三角形的其中兩條邊的長度都對應地相等,且兩條邊夾著的角都對應地相等的話,該兩個三角形就是全等三角形。

a.s.a. (angle-side-angle)(角、邊、角):各三角形的其中兩個角都對應地相等,且兩個角夾著的邊都對應地相等的話,該兩個三角形就是全等三角形。

a.a.s. (angle-angle-side)(角、角、邊):各三角形的其中兩個角都對應地相等,且沒有被兩個角夾著的邊都對應地相等的話,該兩個三角形就是全等三角形。

h.l.(hypotenuse -leg) (斜邊、直角邊):直角三角形中一條斜邊和一條直角邊都對應相等,該兩個三角形就是全等三角形。

不同的定義推理出不同的判定方法,這就是全等三角形的特殊之處。

二、基礎知識梳理

(一)、基本概念

1、“全等”的理解全等的圖形必須滿足:(1)形狀相同的圖形;(2)大小相等的圖形;

即能夠完全重合的兩個圖形叫全等形。同樣我們把能夠完全重合的兩個三角形叫做全等三角形。

2、全等三角形的性質

(1)全等三角形對應邊相等;(2)全等三角形對應角相等;

3、全等三角形的判定方法

(1)三邊對應相等的兩個三角形全等。

(2)兩角和它們的'夾邊對應相等的兩個三角形全等。

(3)兩角和其中一角的對邊對應相等的兩個三角形全等。

(4)兩邊和它們的夾角對應相等的兩個三角形全等。

(5)斜邊和一條直角邊對應相等的兩個直角三角形全等。

4、角平分線的性質及判定

性質:角平分線上的點到這個角的兩邊的距離相等

判定:到一個角的兩邊距離相等的點在這個角平分線上

(二)靈活運用定理

證明兩個三角形全等,必須根據已知條件與結論,認真分析圖形,準確無誤的確定對應邊及對應角;去分析已具有的條件和還缺少的條件,并會將其他一些條件轉化為所需的條件,從而使問題得到解決。運用定理證明三角形全等時要注意以下幾點。

1、判定兩個三角形全等的定理中,必須具備三個條件,且至少要有一組邊對應相等,因此在尋找全等的條件時,總是先尋找邊相等的可能性。

2、要善于發(fā)現和利用隱含的等量元素,如公共角、公共邊、對頂角等。

3、要善于靈活選擇適當的方法判定兩個三角形全等。

(1)已知條件中有兩角對應相等,可找:

①夾邊相等(asa)②任一組等角的對邊相等(aas)

(2)已知條件中有兩邊對應相等,可找

①夾角相等(sas)②第三組邊也相等(sss)

(3)已知條件中有一邊一角對應相等,可找

①任一組角相等(aas 或asa)②夾等角的另一組邊相等(sas)

三、疑點、易錯點

1、對全等三角形書寫的錯誤

在書寫全等三角形時一定要把表示對應頂點的字母寫在對應的位置上。切記不要弄錯。

2、對全等三角形判定方法理解錯誤;

3、利用角平分線的性質證題時,要克服多數同學習慣于用全等證明的思維定勢的消極影響。

【第2篇 初二數學全等三角形知識點總結

一.定義

1.全等形:形狀大小相同,能完全重合的兩個圖形.

2.全等三角形:能夠完全重合的兩個三角形.

二.重點

1.平移,翻折,旋轉前后的圖形全等.

2.全等三角形的性質:全等三角形的對應邊相等,全等三角形的對應角相等.

3.全等三角形的判定:

sss三邊對應相等的兩個三角形全等[邊邊邊]

sas兩邊和它們的夾角對應相等的兩個三角形全等[邊角邊]

asa兩角和它們的夾邊對應相等的兩個三角形全等[角邊角]

aas兩個角和其中一個角的對邊開業(yè)相等的兩個三角形全等[邊角邊]

hl斜邊和一條直角邊對應相等的兩個三角形全等[斜邊,直角邊]

4.角平分線的性質:角的平分線上的點到角的兩邊的距離相等.

5.角平分線的判定:角的內部到角的兩邊的距離相等的點在角的平分線上.

【第3篇 八年級上冊數學全等三角形知識點的總結

八年級上冊數學全等三角形知識點的總結

定義

能夠完全重合的兩個三角形稱為全等三角形。(注:全等三角形是相似三角形中相似比為1:1的特殊情況)

當兩個三角形完全重合時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。

由此,可以得出:全等三角形的對應邊相等,對應角相等。

(1)全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;

(2)全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角;

(3)有公共邊的,公共邊一定是對應邊;

(4)有公共角的,角一定是對應角;

(5)有對頂角的,對頂角一定是對應角;

表示:全等用“≌”表示,讀作“全等于”。

判定公理

1、三組對應邊分別相等的兩個三角形全等(簡稱sss或“邊邊邊”),這一條也說明了三角形具有穩(wěn)定性的原因。

2、有兩邊及其夾角對應相等的兩個三角形全等(sas或“邊角邊”)。

3、有兩角及其夾邊對應相等的兩個三角形全等(asa或“角邊角”)。

由3可推到

4、有兩角及其一角的對邊對應相等的兩個三角形全等(aas或“角角邊”)

5、直角三角形全等條件有:斜邊及一直角邊對應相等的兩個直角三角形全等(hl或“斜邊,直角邊”) 所以,sss,sas,asa,aas,hl均為判定三角形全等的定理。

注意:在全等的判定中,沒有aaa角角角和ssa(特例:直角三角形為hl,屬于ssa)邊邊角,這兩種情況都不能唯一確定三角形的形狀。 a是英文角的縮寫(angle),s是英文邊的縮寫(side)。

h是英文斜邊的縮寫(hypotenuse),l是英文直角邊的縮寫(leg)。

6.三條中線(或高、角分線)分別對應相等的兩個三角形全等。

性質

三角形全等的條件:

1、全等三角形的對應角相等。

2、全等三角形的對應邊相等

3、全等三角形的對應頂點相等。

4、全等三角形的對應邊上的高對應相等。

5、全等三角形的對應角平分線相等。

6、全等三角形的對應中線相等。

7、全等三角形面積相等。

8、全等三角形周長相等。

9、全等三角形可以完全重合。

三角形全等的方法:

1、三邊對應相等的兩個三角形全等。(sss)

2、兩邊和它們的夾角對應相等的.兩個三角形全等。(sas)

3、兩角和它們的夾邊對應相等的兩個三角形全等。(asa)

4、有兩角及其一角的對邊對應相等的兩個三角形全等(aas)

5、斜邊和一條直角邊對應相等的兩個直角三角形全等。(hl)

推論

要驗證全等三角形,不需驗證所有邊及所有角也對應地相同。以下判定,是由三個對應的部分組成,即全等三角形可透過以下定義來判定:

s.s.s. (side-side-side)(邊、邊、邊):各三角形的三條邊的長度都對應地相等的話,該兩個三角形就是全等。

s.a.s. (side-angle-side)(邊、角、邊):各三角形的其中兩條邊的長度都對應地相等,且兩條邊夾著的角都對應地相等的話,該兩個三角形就是全等。

a.s.a. (angle-side-angle)(角、邊、角):各三角形的其中兩個角都對應地相等,且兩個角夾著的邊都對應地相等的話,該兩個三角形就是全等。

a.a.s. (angle-angle-side)(角、角、邊):各三角形的其中兩個角都對應地相等,且沒有被兩個角夾著的邊都對應地相等的話,該兩個三角形就是全等。

r.h.s. / h.l. (right angle-hypotenuse-side)(直角、斜邊、邊):各三角形的直角、斜邊及另外一條邊都對應地相等的話,該兩個三角形就是全等。

但并非運用任何三個相等的部分便能判定三角形是否全等。以以下的判定同樣是運用兩個三角形的三個相等的部分,但不能判定全等三角形:

a.a.a. (angle-angle-angle)(角、角、角):各三角形的任何三個角都對應地相等,但這并不能判定全等三角形,但則可判定相似三角形。

a.s.s. (angle-side-side)(角、邊、邊):各三角形的其中一個角都相等,且其余的兩條邊(沒有夾著該角),但這并不能判定全等三角形,除非是直角三角形。但若是直角三角形的話,應以r.h.s.來判定。

1、性質中三角形全等是條件,結論是對應角、對應邊相等。 而全等的判定卻剛好相反。

2、利用性質和判定,學會準確地找出兩個全等三角形中的對應邊與對應角是關鍵。在寫兩個三角形全等時,一定把對應的頂點,角、邊的順序寫一致,為找對應邊,角提供方便。

3,當圖中出現兩個以上等邊三角形時,應首先考慮用sas找全等三角形。

4、用在實際中,一般我們用全等三角形測相等的距離。以及相等的角,可以用于工業(yè)和軍事。

5、三角形具有一定的穩(wěn)定性,所以我們用這個原理來做腳手架及其他支撐物體。

【第4篇 全等三角形知識點的總結

有關全等三角形知識點的總結

定義

能夠完全重合的兩個三角形稱為全等三角形。(注:全等三角形是相似三角形中相似比為1:1的特殊情況)

當兩個三角形完全重合時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。

由此,可以得出:全等三角形的對應邊相等,對應角相等。

(1)全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;

(2)全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角;

(3)有公共邊的,公共邊一定是對應邊;

(4)有公共角的,角一定是對應角;

(5)有對頂角的,對頂角一定是對應角;

表示:全等用“≌”表示,讀作“全等于”。

判定公理

1、三組對應邊分別相等的兩個三角形全等(簡稱sss或“邊邊邊”),這一條也說明了三角形具有穩(wěn)定性的原因。

2、有兩邊及其夾角對應相等的兩個三角形全等(sas或“邊角邊”)。

3、有兩角及其夾邊對應相等的兩個三角形全等(asa或“角邊角”)。

由3可推到

4、有兩角及其一角的對邊對應相等的兩個三角形全等(aas或“角角邊”)

5、直角三角形全等條件有:斜邊及一直角邊對應相等的兩個直角三角形全等(hl或“斜邊,直角邊”) 所以,sss,sas,asa,aas,hl均為判定三角形全等的定理。

注意:在全等的判定中,沒有aaa角角角和ssa(特例:直角三角形為hl,屬于ssa)邊邊角,這兩種情況都不能唯一確定三角形的形狀。 a是英文角的縮寫(angle),s是英文邊的縮寫(side)。

h是英文斜邊的縮寫(hypotenuse),l是英文直角邊的縮寫(leg)。

6.三條中線(或高、角分線)分別對應相等的兩個三角形全等。

性質

三角形全等的條件:

1、全等三角形的對應角相等。

2、全等三角形的對應邊相等

3、全等三角形的對應頂點相等。

4、全等三角形的對應邊上的高對應相等。

5、全等三角形的對應角平分線相等。

6、全等三角形的對應中線相等。

7、全等三角形面積相等。

8、全等三角形周長相等。

9、全等三角形可以完全重合。

三角形全等的方法:

1、三邊對應相等的兩個三角形全等。(sss)

2、兩邊和它們的夾角對應相等的兩個三角形全等。(sas)

3、兩角和它們的夾邊對應相等的兩個三角形全等。(asa)

4、有兩角及其一角的對邊對應相等的兩個三角形全等(aas)

5、斜邊和一條直角邊對應相等的兩個直角三角形全等。(hl)

推論

要驗證全等三角形,不需驗證所有邊及所有角也對應地相同。以下判定,是由三個對應的部分組成,即全等三角形可透過以下定義來判定:

s.s.s.(side-side-side)(邊、邊、邊):各三角形的三條邊的長度都對應地相等的話,該兩個三角形就是全等。

s.a.s.(side-angle-side)(邊、角、邊):各三角形的其中兩條邊的長度都對應地相等,且兩條邊夾著的角都對應地相等的話,該兩個三角形就是全等。

a.s.a.(angle-side-angle)(角、邊、角):各三角形的其中兩個角都對應地相等,且兩個角夾著的邊都對應地相等的話,該兩個三角形就是全等。

a.a.s.(angle-angle-side)(角、角、邊):各三角形的其中兩個角都對應地相等,且沒有被兩個角夾著的邊都對應地相等的`話,該兩個三角形就是全等。

r.h.s./h.l.(rightangle-hypotenuse-side)(直角、斜邊、邊):各三角形的直角、斜邊及另外一條邊都對應地相等的話,該兩個三角形就是全等。

但并非運用任何三個相等的部分便能判定三角形是否全等。以下的判定同樣是運用兩個三角形的三個相等的部分,但不能判定全等三角形:

a.a.a.(angle-angle-angle)(角、角、角):各三角形的任何三個角都對應地相等,但這并不能判定全等三角形,但則可判定相似三角形。

a.s.s.(angle-side-side)(角、邊、邊):各三角形的其中一個角都相等,且其余的兩條邊(沒有夾著該角),但這并不能判定全等三角形,除非是直角三角形。但若是直角三角形的話,應以r.h.s.來判定。編輯本段運用

1、性質中三角形全等是條件,結論是對應角、對應邊相等。而全等的判定卻剛好相反。

2、利用性質和判定,學會準確地找出兩個全等三角形中的對應邊與對應角是關鍵。在寫兩個三角形全等時,一定把對應的頂點,角、邊的順序寫一致,為找對應邊,角提供方便。

3,當圖中出現兩個以上等邊三角形時,應首先考慮用sas找全等三角形。

4、用在實際中,一般我們用全等三角形測相等的距離。以及相等的角,可以用于工業(yè)和軍事。

5、三角形具有一定的穩(wěn)定性,所以我們用這個原理來做腳手架及其他支撐物體。

全等三角形知識總結(四篇)

一.定義1.全等形:形狀大小相同,能完全重合的兩個圖形.2.全等三角形:能夠完全重合的兩個三角形.二.重點1.平移,翻折,旋轉前后的圖形全等.2.全等三角形的性質:全等三角形的對應邊相…
推薦度:
點擊下載文檔文檔為doc格式

相關全等三角形知識信息

  • 全等三角形知識總結(四篇)
  • 全等三角形知識總結(四篇)90人關注

    一.定義1.全等形:形狀大小相同,能完全重合的兩個圖形.2.全等三角形:能夠完全重合的兩個三角形.二.重點1.平移,翻折,旋轉前后的圖形全等.2.全等三角形的性質:全等三角形 ...[更多]